1: Introduction
What is Python..?
A Brief history of Python
Why Should I learn Python..?
Installing Python
How to execute Python program
Write your first program
2: Variables & Data Types
Variables
Numbers
String
Lists ,Tuples & Dictionary
3: Conditional Statements & Loops
if…statement
if…else statement
elif…statement
The while…Loop
The for….Loop
4: Control Statements
continue statement
break statement
pass statement
5: Functions
Define function
Calling a function
Function arguments
Built-in functions
6: Modules & Packages
Modules
How to import a module…?
Packages
How to create packages
7: Classes & Objects
Introduction about classes & objects
Creating a class & object
Inheritance
Methods Overriding
Data hiding
8: Files & Exception Handling
Writing data to a file
Reading data from a file
Read and Write data from csv file
try…except
try…except…else
finally
os module
Module 2:Introduction to Machine learning(ML)
What is Machine learing?
Overview about sci-kit learn and tensorflow
Types of ML
Some complementing fields of ML
ML algorithms
Machine learning examples
Module 3:NumPy Arrays
Creating multidimensional array
NumPy-Data types
Array attributes
Indexing and Slicing
Creating array views and copies
Manipulating array shapes
I/O with NumPy
Module 4:Working with Pandas
Installing pandas
Pandas dataframes
Pandas Series
Data aggregation with Pandas DataFrames
Concatenating and appending DataFrames
Joining DataFrames
Handling missing data
Module 5: Python Regular Expressions
What are regular expressions?
The match Function
The search Function
Matching vs searching
Search and Replace
Extended Regular Expressions
Wildcard
Module 6:Python Oracle Database Access
Install the cx_Oracle and other Packages
Create Database Connection
CREATE, INSERT, READ, UPDATE and DELETE Operation
DML and DDL Oepration with Databases
Performing Transactions
Handling Database Errors
Disconnecting Database
Module 7:Web Scraping in Python
Module 8:Regression based learning
Simple regression
Multiple regression
Logistic regression
Predicting house prices with regression
Module 9:Clustering based learning
Defnition
Types of clustering
The k-means clustering algorithm
Module 5:Data mining
Introducing data mining
Decision Tree
Affiity Analysis
Clustering
Module 6:Classifiation – Sentiment Analysis
Module 7:Natural Language Processing
Install nltk
Tokenize words
Tokenizing sentences
Stop words with NLTK
Stemming words with NLTK
Speech tagging
Sentiment analysis with NLTK
Module 8:Making Sense of data through Visualization
Introducing matplotlib
Bar Charts
Line Charts
Scatter plots
Bubble charts
Module 9:Working with openCV
Setting up opencv
Loading and displaying images
Applying image filters
Tracking faces
Face recognition
Module 10:Performing predictions with Linear Regression
Simple linear regression
Multiple regression
Training and testing model
Projects:-
EDA on movies database | Mini |
House price prediction using Regression | Mini |
Predict survival on the Titanic using Classification | Mini |
Image Clustering | Mini |
Document Clustering | Mini |
Twitter US Airline Sentiment | Major |
Restaurant revenue prediction | Major |
Disease Prediction | Major |
Note: Depends upon Trainers above projects may vary